Schrödinger Expands Discovery Efforts for COVID-19 Alliance with Advanced Molecular Simulation Leveraging High-Powered Parallel Computing on Google Cloud

June 23, 2020

NEW YORK--(BUSINESS WIRE)--Jun. 23, 2020-- Schrödinger (Nasdaq: SDGR), whose physics-based software platform enables discovery of high-quality, novel molecules for therapeutics and materials, today announced a significant expansion of its work to discover novel antiviral therapeutics for COVID-19 as a part of a philanthropic global initiative. The accelerated pace, including the evaluation of billions of molecules each week, is supported by Google Cloud, which has donated cloud credits for high-powered parallel computing to enable rapid exploration of chemical space.

Schrödinger is leading the computational design work in an alliance of major biopharma companies collaborating on the COVID-19 initiative, including Takeda, Novartis, Gilead Sciences, and WuXi AppTec. Schrödinger's computational platform models the properties of molecules at the atomic level and identifies those most likely to succeed as therapeutics. To date, Schrödinger has evaluated four different protein targets for the COVID-19 initiative and utilized Google Cloud to support ultra-large virtual screens for two of the targets. The alliance partners will be responsible for acquiring and assaying the most promising compounds and advancing them to lead optimization with Schrödinger's assistance.

Earlier this year, Schrödinger entered into a strategic agreement with Google Cloud that gave Schrödinger access to computing capacity equivalent to the world’s most powerful supercomputers to accelerate discovery for its commercial partners and its internal pipeline. The new grant from Google Cloud allows Schrödinger to deploy the same high-speed, parallel computing capability on the COVID-19 project, enabling rapid assessments of critical properties of billions of molecules per week through free-energy calculations and other physics-based applications.

The Google Cloud grant to the COVID-19 initiative amounts to 16 million hours of NVIDIA GPU time, which if used consecutively, would equate to 1.826 years of around-the-clock computing. GPU hours can be run in parallel on multiple NVIDIA processors, enabling the exploration of vast swaths of chemical space in a compressed time frame to speed the discovery portion of the R&D work.

“Google Cloud has been a great technology partner to us as we push the limits of computational modeling in our partnered and internal drug discovery programs to identify high-quality molecules more rapidly and at lower cost than traditional methods,” said Pat Lorton, Schrödinger’s Chief Technology Officer. “We’re delighted to be able to extend that bold approach to chemical exploration to the COVID-19 project, which is so important to global public health. Discovering high-quality novel molecules in silico requires extensive computing power, and Google Cloud’s GPU credits are crucial to that work.”

“We’re delighted to be teaming up again with Schrödinger and joining the rest of the COVID-19 alliance on this important project,” said Joe Corkery, Google Cloud's Director of Product Management, Healthcare. “Like all the partners in this alliance, we understand the enormous public health challenge presented by COVID-19, and we’re proud to be contributing our compute power to accelerate the identification of new potential therapeutics in the fight against the virus.”

About Schrödinger

Schrödinger’s industry-leading computational platform to accelerate drug discovery and materials design is deployed by leading biopharmaceutical and industrial companies, academic institutions, and government laboratories worldwide. In addition to this global business, Schrödinger is also applying its computational platform to a robust pipeline of drug discovery programs in collaboration with pharmaceutical companies and has co-founded leading biotech companies. In addition, Schrödinger is using its platform to advance a pipeline of internal, wholly-owned drug discovery programs. Schrödinger’s significant and ongoing investment in basic research continues to drive advances in its computational platform. Founded in 1990, Schrödinger has over 400 employees in its New York City headquarters and around the world. Visit www.schrodinger.com for more information.

Forward-Looking Statements

This press release contains forward-looking statements within the meaning of The Private Securities Litigation Reform Act of 1995 including, but not
limited to those regarding our expectations about the speed and capacity of our computational platform and our expectations related to our efforts to combat COVID-19 and potentially develop antiviral therapies. Statements including words such as "anticipate," "believe," "contemplate," "continue," "could," "estimate," "expect," "intend," "may," "might," "plan," "potential," "predict," "project," "should," "target," "will," "would" and statements in the future tense are forward-looking statements. These forward-looking statements reflect our current views about our plans, intentions, expectations, strategies and prospects, which are based on the information currently available to us and on assumptions we have made. Actual results may differ materially from those described in these forward-looking statements and are subject to a variety of assumptions, uncertainties, risks and factors that are beyond our control, including our reliance upon third-party providers of cloud-based infrastructure to host our software solutions and other risks detailed under the caption "Risk Factors" and elsewhere in our Securities and Exchange Commission filings and reports, including the Quarterly Report on Form 10-Q filed with the Securities and Exchange Commission on May 13, 2020, as well as future filings and reports by us. Any forward-looking statements contained in this press release speak only as of the date hereof. Except as required by law, we undertake no duty or obligation to update any forward-looking statements contained in this press release as a result of new information, future events, changes in expectations or otherwise.

View source version on businesswire.com: https://www.businesswire.com/news/home/20200623005281/en/

Media Contact:
Stephanie Simon
Ten Bridge Communications
stephanie@tenbridgecommunications.com
617-581-9333

Investor Contact:
Christina Tartaglia
Stern IR, Inc.
christina.tartaglia@sternir.com
212-362-1200

Source: Schrödinger